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h i g h l i g h t s

• Within-subject intervals facilitate visualizations in repeated-measures designs.
• Nathoo, Kilshaw, & Masson (2018) developed a Bayesian within-subject interval.
• The interval neglects estimation uncertainty and shrinkage of random effects.
• As a remedy, a fully Bayesian, two-step approach is proposed.
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a b s t r a c t

To facilitate the interpretation of systematicmean differences inwithin-subject designs, Nathoo, Kilshaw,
and Masson (2018) proposed a Bayesian within-subject highest-density interval (HDI). However, their
approach rests on independent maximum-likelihood estimates for the random effects which do not take
estimation uncertainty and shrinkage into account. I propose an extension of Nathoo et al.’s method using
a fully Bayesian, two-step approach. First, posterior samples are drawn for the linearmixedmodel. Second,
the within-subject HDI is computed repeatedly based on the posterior samples, thereby accounting for
estimation uncertainty and shrinkage. After marginalizing over the posterior distribution, the two-step
approach results in a Bayesian within-subject HDI with a width similar to that of the classical within-
subject confidence interval proposed by Loftus and Masson (1994).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

To illustrate the relative size of measurement errors versus
systematic effects in repeated-measures designs, it has become
standard practice to plot mean patterns with error bars based
on within-subject confidence intervals (Loftus & Masson, 1994).
Essentially, this approach removes the between-subject variance,
which is usually not of interest in within-subject designs. Re-
cently, Nathoo, Kilshaw, and Masson (2018) extended this work
and proposed a Bayesian approach to within-subject interval es-
timation. Assuming Jeffreys noninformative prior, Nathoo et al.
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(2018) analytically derived the posterior distribution of the mean
parameter µj conditional on the random-effect estimates. The
resulting Bayesian highest-density interval (HDI) offers the ad-
vantage of having a more intuitive interpretation than classical
confidence intervals (Hoekstra, Morey, Rouder, & Wagenmakers,
2014). Furthermore, thewithin-subject HDI by Nathoo et al. (2018)
is always more narrow than the frequentist within-subject confi-
dence interval by Loftus and Masson (1994).

However, the Bayesian HDI proposed by Nathoo et al. (2018)
relies on an approach termed ‘‘conditional Bayesian inference’’
(p. 2). In contrast to a fully Bayesian analysis, the HDI is derived
conditional on independent maximum-likelihood estimates for
the random effects. By doing so, the random-effect estimates are
treated as fixed values, and in turn, ‘‘the uncertainty in estimat-
ing the subject-specific random effects is not propagated to the
width of the HDI’’ (Nathoo et al., 2018 p. 3). Hence, one of the
main advantages of a fully Bayesian analysis is lost, namely, that
statistical inference accounts for estimation error of all parameters
simultaneously (Gelman et al., 2013). While acknowledging this
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possible drawback, Nathoo et al. (2018) justified their approach as
follows: ‘‘It is the conditioning on estimated random effects that
removes the uncertainty that is not of interest, and this condition-
ing precludes fully Bayesian inference.’’

Besides not accounting for estimation uncertainty of the
random-effect estimates, Nathoo et al. (2018) relied on descriptive
person-means to estimate the random effects. However, these in-
dependent maximum-likelihood estimates do not provide shrink-
age, meaning that the random-effect estimates are not pulled
towards the overall group mean (Efron & Morris, 1977; Pinheiro
& Bates, 2000). Nathoo et al. (2018) mentioned this drawback in
the discussion and justified the reliance on the simple plug-in esti-
mator by the ‘‘desire for simple closed forms that can be easily used
by practitioners’’ (p. 7). While closed-form solutions are in general
desirable and might increase the applicability of a method, more
complex computational approaches can nowadays easily be used
on any desktop computer, especially if the relevant code is shared
and openly available. Leaving aside computational considerations,
it is well known that shrinkage offers many benefits in linear
mixed-effects models. Most importantly, it increases the average
prediction accuracy by decreasing the variance of the random-
effect estimates compared to independent maximum-likelihood
estimates (James & Stein, 1961; Stein, 1956). Since the conditional
Bayesian inference approach by Nathoo et al. (2018) relies on inde-
pendent random-effect estimateswithout shrinkage, the between-
subject variance (i.e., the random-effect variance) will generally be
overestimated. Given that the proposed method aims at removing
exactly this between-subject variance, the correction will gener-
ally overshoot and result in a too narrow within-subject HDI. As a
consequence, the proposed Bayesianwithin-subject intervalmight
lead to overconfidence in substantive conclusions.

As a remedy, I propose a fully Bayesian two-step approach
that (a) takes into account the estimation uncertainty of random
effects and (b) relies on shrinkage for the random-effect estimates.
At its core, the proposed method can be seen as an application
of Nathoo et al. (2018)’s closed-form solutions for the within-
subject HDI within a fully Bayesian framework. However, instead
of conditioning on independent maximum-likelihood estimates
for the random effects, the within-subject HDI is computed re-
peatedly using posterior samples from the underlying linearmixed
model. As shown in the next section, this two-step approach takes
estimation uncertainty and shrinkage of the random effects into
account.

2. Usingposterior samples to propagate estimationuncertainty

Before outlining theproposedmethod, I provide a short descrip-
tion of the linear mixed model and the Bayesian within-subject
HDI (for details, see Nathoo et al., 2018). In awithin-subject design,
responses Yij of a person i = 1, . . . ,N in condition j = 1, . . . , C are
modeled as:

Yij = µj + bi + ϵij, ϵij
iid
∼ N(0, σ 2

ϵ ), (1)

where µj is the true mean in the jth condition, bi the random
effect of the ith subject, and σ 2

ϵ the error variance of the residuals
ϵij. Assuming Jeffreys noninformative prior, Nathoo et al. (2018)
derived the posterior distribution of the mean conditional on the
random-effect estimates:(

µj | Y , b̂1, . . . , b̂N
)

∼ tC(N−1)

(
µ̂j,

SSS×C

N(N − 1)C

)
, (2)

where µ̂j =
1
N

∑
iYij are the estimated condition means. Moreover,

the independent maximum-likelihood estimates for the random
effects b̂i = Mi· − M are based on the mean Mi· =

1
C

∑
jYij for

the ith person and the overall mean M =
1
NC

∑
i
∑

jYij. Finally, the
interaction sum-of-squares SSS×C is computed as:

SSS×C =

∑
j

∑
i

(
Yij − (Mi· − M) − M·j

)2
=

∑
j

∑
i

(Yij − b̂i − µ̂j)2. (3)

Based on the modified conditional posterior distribution in Eq. (2),
Nathoo et al. (2018) derived the critical boundaries for the within-
subject HDI:

µ̂j ±

√
SSS×C

N(N − 1)C
tC(N−1),α/2. (4)

The proposed extension of this Bayesianwithin-subject interval
relies on a method by Ly et al. (2017) who used a two-step ap-
proach to correct the credibility interval of a correlation coefficient
when some variables are contaminated by estimation error (for a
user-friendly implementation, see Heck, Arnold, & Arnold, 2018).
To apply the two-step approach to the Bayesian within-subject
HDI, the linear mixed model in Eq. (1) is first fitted in a fully
Bayesian framework. For this purpose, I follow Nathoo et al. (2018)
in assuming Jeffreys noninformative prior for the condition means
and the residual variance:

p(µ1, . . . , µC , σ
2
ϵ ) ∝

1
σ 2

ϵ

(5)

Moreover, additional assumptions are required to actually fit the
model. First, following common practice in mixed-effects model-
ing (Gelman et al., 2013; Pinheiro & Bates, 2000), it is assumed that
the random effects are normally distributed with variance τ 2:

bi
iid
∼ N(0, τ 2). (6)

Second, a prior distribution for the random-effect variance τ 2 is
required. Here, we follow the recommendation of Rouder, Morey,
Speckman, and Province (2012, p. 363) and assume an inverse-
χ2(1) distribution as a prior for the variance of the standardized
random-effect terms bi/σϵ .2 This has the advantage that the re-
sulting within-subject HDI is based on the same prior distribution
for τ 2 as that commonly used to compute default Bayes factors for
ANOVA (Rouder et al., 2012).

Based on user-friendly software such as JAGS (Plummer, 2003)
or Stan (Stan Development Team, 2018), Markov chain Monte
Carlo (MCMC) methods allow us to draw r = 1, . . . , R ran-
dom samples of the parameters from the posterior distribution.
The resulting distribution of posterior samples (µ(r), b(r), σ (r)

ϵ , τ (r))
contains information about the estimation uncertainty of all pa-
rameters (Gelman et al., 2013). Moreover, in a fully Bayesian anal-
ysis, the random-effect posterior samples b(r) will show shrinkage,
meaning that they are usually closer to zero than independent
maximum-likelihood estimates (Ly et al., 2017). The amount of
shrinkage depends on the specific data set, namely, on the number
of observations within and between participants, as well as on the
prior distribution for τ 2 (Marsman, Maris, Bechger, & Glas, 2016;
Rouder, Morey, Verhagen, Swagman, & Wagenmakers, 2017).

Next, we apply the closed-form Equations (2), (3), and (4)
by Nathoo et al. (2018) using the posterior samples b(r)i and µ

(r)
j

instead of the independent point estimates b̂i and µ̂j. Since the
procedure is applied repeatedly for each of the R posterior samples,

2 By assuming a prior for the variance of the standardized random effects, the
prior for the variance τ 2 of the unstandardized random effects is scaled by the
residual variance σ 2

ϵ as follows: (τ 2/σ 2
ϵ | σ 2

ϵ ) ∼ Inverse-χ2(1). Rouder et al. (2012)
provide a detailed discussion of this prior and also propose an alternative, weakly
informative prior distribution for the condition means µ.
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we obtain not one, but R Bayesian within-subject HDIs. Moreover,
instead of computing the residuals in Eq. (3) for all random-effect
terms b(r)i , it is easier and conceptually more natural to estimate
the interaction sum-of-squares SSS×C in the within-subject HDI
in Eq. (4) directly. For this purpose, it is important to recognize
that the interaction sum-of-squares provides an estimate for the
residual-error variance σ 2

ϵ of the linear mixed model:

σ̂ 2
ϵ =

SSS×C

(N − 1)C
(7)

Hence, instead of computing residuals in Eq. (3) using the samples
b(r)i , it is more straightforward to use the posterior samples σ (r)

ϵ

directly to compute within-subject HDIs:

µ
(r)
j ±

σ (r)
ϵ

√
N

tC(N−1),α/2. (8)

By summarizing the resulting distribution of HDIs (e.g., by taking
the mean), we essentially marginalize over the posterior distribu-
tion of the random effects b(r)i and the residual variance σ (r)

ϵ , thus
taking estimation uncertainty and shrinkage into account (Ly et al.,
2017). A user-friendly implementation of this two-step approach
in R is available at the Open Science Framework (https://osf.io/
mrud9/). Note that the approach rests on the assumption that the
residual variance σ 2

ϵ is constant across experimental conditions (cf.
Eq. (1)). To accommodate violations of this sphericity assumption,
the proposed two-step method can be generalized by applying
Theorem 3 of Nathoo et al. (2018) based on MCMC samples from a
heteroscedastic mixed-effects model with different residual vari-
ances σj for each experimental condition.

To illustrate the two-step approach, I applied the proposed
method to the example data set by Loftus and Masson (1994) with
N = 10 participants measured across C = 3 conditions, which
was also used by Nathoo et al. (2018, their Table 1). Fig. 1 shows
that the within-subject HDI by Nathoo et al. (2018) provides a
single modified posterior distribution of the mean µj conditional
on the independent maximum-likelihood estimates of the ran-
dom effects (dashed black line, cf. Eq. (2)). In contrast, the fully
Bayesian, two-step approach results in a complete distribution of
such densities conditional on the posterior samples of the random
effects (thin red lines). To summarize this distribution of within-
subject HDIs, we marginalize over the posterior distribution of
densities by computing the mean (solid black line). Similarly as
for the probability density functions, we can compute a lower
and an upper critical boundary for each of the posterior samples
r = 1, . . . , R using Eq. (8) and then marginalize over the resulting
estimates. The bottom of Fig. 1 shows that this two-step approach
results in a relativelywide 95%within-subject HDI compared to the
95% within-subject HDI conditional on the maximum-likelihood
estimates (half-width: ±0.53 versus ±0.42, respectively). Essen-
tially, the larger width of the proposed within-subject interval
reflects the estimation uncertainty and shrinkage of the random
effects. Interestingly, the width of the posterior-averaged HDI was
very similar to that of the classical within-subject confidence in-
terval (half-width: ±0.52; Loftus & Masson, 1994).

The width of the posterior-averaged within-subject HDI was
also very similar when choosing different prior distributions for
the random-effect variance τ 2. The width of the within-subject
interval was estimated to be ±0.52 when choosing (a) an im-
proper uniform prior on the standard deviation τ of the random
effects (which results in a proper posterior distribution for C ≥ 3;
Gelman, 2006) or (b) a half-Cauchy distribution on τ (Gelman,
2006). Overall, this sensitivity analysis shows that different prior
distributions for the random-effect variance τ 2 result in almost
identical within-subject HDIs, thus corroborating the conclusion
that the conditional approach by Nathoo et al. (2018) results in a
too narrow interval compared to a fully Bayesian approach.

Fig. 1. Posterior distribution of the mean µj conditional on different estimates for
the random effects. The analysis is based on the hypothetical data set by Loftus and
Masson (1994)which includesN = 10 participants each providing C = 3 responses
with condition means M·1 = 11.0, M·2 = 13.0, and M·3 = 14.2 and the residual
sum-of-squares SSS×C = 11.1 (cf. Nathoo et al., 2018 their Table 1).

3. Simulation study

The differences between thewithin-subject confidence interval
by Loftus and Masson (1994), the HDI by Nathoo et al. (2018), and
the proposed posterior-averaged HDI can be studiedmore system-
atically in a Monte Carlo simulation. For this purpose, responses
Yij were generated according to the model equations in Eqs. (1)
and (6) for varying sample sizes of N = 10, 20, . . . , 100. As data-
generating values, the residual variance was fixed at σ 2

ϵ = 1, while
the standard deviation of the random effects varied between τ =

0.25, τ = 1, and τ = 4. Moreover, the number of experimental
conditionswasmanipulated between C = 2, C = 3, and C = 4. For
each of 1000 replications, posterior sampleswere drawn using two
MCMC chains with 2000 iterations each to compute the posterior-
averaged within-subjects HDI in Eq. (8).

Fig. 2 shows the mean width of the three different within-
subject intervals across 1000 replications as a function of the num-
ber of participants N . Across rows, the panels differ by the number
of within-subject conditions C , and across columns, the panels
assume different random-effect variances τ 2. In line with the ana-
lytical proof by Nathoo et al. (2018), the Bayesian within-subject
HDI was always more narrow than the corresponding classical
confidence interval by Loftus and Masson (1994), an effect that
diminished with the number of conditions C . Most importantly,
the HDI by Nathoo et al. (2018) resulted in overconfidence when
compared to the proposed posterior-averaged HDI which takes
estimation uncertainty and shrinkage of the random effects into
account. Moreover, the within-subject interval of the proposed
two-step approachwas almost identical to thewithin-subject con-
fidence interval by Loftus and Masson (1994) when the amount
of heterogeneity was substantial (i.e., if τ ≥ σϵ). In contrast,
the posterior-averaged HDI was below the classical confidence
interval but still above the conditionalHDIwhen the random-effect
parameter τ was smaller than the residual variance (i.e., when
τ = σϵ/4).

Overall, the simulation shows that the narrower width of the
within-subject HDI – according to Nathoo et al. (2018), one of the
key advantages of the conditional Bayesian HDI – may result in
overconfidence compared to a fully Bayesian approachwhich takes
estimation uncertainty and shrinkage of the random effects into
account.

https://osf.io/mrud9/
https://osf.io/mrud9/
https://osf.io/mrud9/
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Fig. 2. Meanwidth of within-subject intervals as computedwith three differentmethods for 1000 replications for each simulation condition. In all cases, the data-generating
residual variance was σ 2

ϵ = 1. Note that the lines for the confidence interval (CI; Loftus & Masson, 1994) and the posterior-averaged HDI overlap for τ ≥ 1 and C ≥ 3.

4. Discussion

The Bayesian within-subject interval derived by Nathoo et al.
(2018) offers some conceptual advantages such as having a more
intuitive interpretation than classical confidence intervals. How-
ever, the within-subject HDI is defined conditional on the random
effects and thus makes the critical assumption that the random-
effect parameters are known and identical to the maximum-
likelihood estimates b̂i. Hence, the approach does not take into
account estimation uncertainty and shrinkage of the random ef-
fects, which is a fundamental advantage of a fully Bayesian infer-
ence (Gelman et al., 2013). As a remedy, I proposed a two-step
approach inwhich posterior samples from the linearmixed-effects
model are plugged into the closed-form solutions by Nathoo et al.
(2018). This has the conceptual advantage of fitting the random-
effect parameters in a fully Bayesian framework instead of condi-
tioning on a single set of point estimates for the random effects.
By averaging over the posterior distribution of the random effects,
the resultingwithin-subject HDI takes both estimation uncertainty
and shrinkage into account (Ly et al., 2017). As expected, the
proposed method results in wider within-subject HDIs compared
to treating the randomeffects as being known (Nathoo et al., 2018).

More surprisingly, the width of the posterior-averaged within-
subject HDI matched that of the classical within-subject in-
terval by Loftus and Masson (1994) when the random-effect
variance was at least as large as the residual variance (i.e., when

τ 2
≥ σ 2

ϵ ). However, despite the numerical similarity in some
scenarios, one should refrain from computing the classical within-
subject confidence interval and simply interpreting it as a Bayesian
within-subject HDI. First, such an approach is conceptually not
valid, and second, one cannot be sure whether the classical confi-
dence interval is similar to the posterior-averagedHDI for a specific
data set. Instead, I advocate to fit the mixed-effects model in a
fully Bayesian framework and then apply the proposed two-step
approach, which can easily be accomplished using the R scripts
provided in the supplementary material (https://osf.io/mrud9/).
Moreover, future work might provide an analytical solution for
the posterior-averaged within-subject HDI that does not require
MCMC samples from the posterior distribution.

The main issue of conditioning on the random-effect estimates
is related to biased maximum likelihood estimates for the resid-
ual variance σ 2

ϵ which have been proposed for classical within-
subject confidence intervals. To simplify computations, Cousineau
(2005) first ‘‘standardized’’ the within-subjects data set by sub-
tracting the participant means from the actual observations Yij
while adding the overall mean (i.e., Y ∗

ij = Yij − Mi· + M). Sec-
ond, Cousineau (2005) computed confidence intervals for each
experimental condition based on these standardized observations
Y ∗

ij . However, Morey (2008) showed that this standardization pro-
cedure results in a biased estimate of the residual variance and
thus in too narrow within-subject intervals. The standardization
approach by Cousineau (2005) bears some similarity with the

https://osf.io/mrud9/
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within-subject HDI by Nathoo et al. (2018) which is defined condi-
tional on themaximum likelihood estimates for the randomeffects
b̂i = Mi· − M . Essentially, the random effects are treated as if they
were perfectly known in both cases, that is, when standardizing
the observations in the classical approach (i.e., Y ∗

ij = Yij − b̂i) and
when conditioning on the estimates b̂i in the conditional Bayesian
framework in Eq. (2). This conceptual similarity also becomes clear
when comparing the different estimates for the residual variance.
Conditional on the random effects, Nathoo et al. (2018) derived the
estimate σ̂ 2

ϵ = SSS×C/((N − 1)C), which differs from the origi-
nal, unbiased estimate in Loftus and Masson (1994) by the factor
C/(C − 1)—which is exactly the multiplicative correction fac-
tor derived by Morey (2008) for the standardization approach
of Cousineau (2005). Overall, this comparison of classical and
Bayesian within-subject intervals highlights the importance of
treating the random effects as unknown parameters of the under-
lying statistical model.

The proposed two-step approach fits all parameters of the
mixed-effects model in a fully Bayesian framework and thereby
accounts for estimation uncertainty and shrinkage of the random
effects. However, it is important to keep inmind that the proposed
extension requires an additional assumption that is not present in
the approach based on conditional Bayesian inference byNathoo et
al. (2018). Specifically, in the fully Bayesian analysis, it is assumed
that the random effects are normally distributed. This additional
assumption is very common in mixed-effects modeling (Bates,
Mächler, Bolker, & Walker, 2015; Gelman et al., 2013; Pinheiro &
Bates, 2000) and justified by the fact that the benefits of shrink-
age usually outweigh the costs of making a specific distributional
assumption (Efron & Morris, 1977). Moreover, even if the distri-
bution of random effects is misspecified, it can be shown that the
random-effect estimates converge to the true distribution in the
population under certain conditions (Marsman et al., 2016). As a
second limitation, the proposed two-step approach requires poste-
rior samples from themixed-effectsmodelwhich renders its appli-
cation computationally more costly compared to the closed-form
solutions by Nathoo et al. (2018). However, given the availability
of easy-to-use MCMC software (Plummer, 2003; Stan Develop-
ment Team, 2018), the conceptual benefits of drawing conclusions
within a fully Bayesian framework outweigh the computational
costs.

In sum, I have highlighted the importance of considering esti-
mation uncertainty and shrinkage of random effects when com-
puting within-subject HDIs in a Bayesian framework. By applying
the closed-form solution of Nathoo et al. (2018) within the context
of a fully Bayesian analysis, a within-subject interval is obtained
that has an intuitive interpretation (Hoekstra et al., 2014) while
taking estimation uncertainty and shrinkage of the parameters into
account.
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